Early Additive Stage

Lisa solves the problem $9+6$ by working out $10+5=15$. She also solves $7+48$ by working out $5+50$.

1. How would Lisa use the same strategy to solve these problems?

$$
5+8 \quad 37+6 \quad 8+299 \quad 996+456
$$

2. Lisa knows that these equations are correct or incorrect without working out the answers. Which equations are correct?

$$
\begin{array}{ll}
6+8=10+12 & 10+4=9+5 \\
78+8=80+10 & 100+24=97+27 \\
247+988=259+1000 & 348+52=350+50
\end{array}
$$

3. Use Lisa's strategy to find the number that goes in each box:

$$
\begin{array}{ll}
10+3=\square+7 & 30+\square=28+5 \\
87+24=90+\square & \square+245=300+242 \\
789+94=800+\square & 5000+\square=4998+666
\end{array}
$$

4. What numbers go in each shaped box to make these equations true?

$$
28+\square=30+\Delta \quad O+749=\diamond+746
$$

5. What is always true about the numbers that go in the different shapes?

$$
196+=200+* \quad *+357=370+*
$$

6. Lisa uses letters instead of numbers. What goes in each empty box?

$$
m+48=\square+50 \quad 296+\square=p+300 \square+85=100+w
$$

Advanced Additive Stage

Kahu solves the problem 82-48 by working out 84-50 = 34. He also solves $452-239$ by working out $453-240=213$.

1. How would Kahu use the same strategy to solve these problems?

$$
\begin{array}{ccc}
91-69 & 114-58 & 836-377
\end{array}
$$

2. Kahu knows that these equations are correct or incorrect without working out the answers. Which equations are correct?

$$
\begin{array}{ll}
74-28=76-30 & 92-56=88-60 \\
143-85=158-100 & 904-168=902-170 \\
417-195=422-200 & 1123-483=1140-500
\end{array}
$$

3. Use Kahu's strategy to find the number that goes in each box:

$$
\begin{array}{ll}
32-19=\square-20 & 73-\square=76-30 \\
262-128=264-\square & \square-245=519-250 \\
2006-997=2009-\square & 3333-\square=3359-800
\end{array}
$$

4. What numbers go in each shaped box to make these equations true?
$\bigcirc-37=\diamond-50$
$832-\square=843-\Delta$
5. What is always true about the numbers that go in the different shapes?

* $-57=-60$

$$
777-\leqslant=800-*
$$

6. Kahu uses letters instead of numbers. What goes in each empty box?
$\square-95=j-100 v-284=\square-300 \quad 397-p=404-\square$

Advanced Multiplicative Stage

Zane solves the problem $64 \div 4$ by working out ($64 \div 8) \times 2=16$. He also solves $81 \div 3$ by working out $(81 \div 9) \times 3=27$.

1. How would Zane use the same strategy to solve these problems?

$$
56 \div 4 \quad 72 \div 3 \quad 330 \div 5 \quad 450 \div 25
$$

2. Zane knows that these equations are correct or incorrect without working out the answers.
Which equations are correct?

$$
\begin{array}{ll}
56 \div 4=(56 \div 8) \times 2 & (108 \div 9) \times 3=108 \div 3 \\
(370 \div 10) \times 2=370 \div 20 & 4700 \div 25=(4700 \div 100) \times 4
\end{array}
$$

3. Use Zane's strategy to find the number that goes in each box:

$$
\begin{array}{ll}
48 \div 3=(48 \div 6) \times \square & (96 \div 12) \times 3=96 \div \\
(228 \div \square) \times 3=228 \div 2 & 738 \div 3=(738 \div 18) \times \square
\end{array}
$$

4. What numbers go in each shaped box to make these equations true?

$$
(72 \div \square) \times 2=72 \div \triangle \quad 1440 \div O=(1440 \div 36) \times \$
$$

5. What is always true about the numbers that go in the different shapes?
$(256 \div \triangle) \times 3=72 \div O \quad 504 \div \square=(1008 \div 4) \times *$
6. Zane uses letters instead of numbers. What goes in each empty box?

$$
\begin{array}{ll}
(648 \div 6) \times \square=648 \div k & 512 \div n=(512 \div \square) \times 8 \\
(625 \div y) \times 5=625 \div \square & 1000 \div 25=(1000 \div \square) \times z
\end{array}
$$

Advanced Proportional Stage

Pene simplifies $\frac{18}{24}$ and 18:24 by knowing that $\underline{3} \times 6=18$ and
$\underline{4} \times 6=24$, so $\frac{18}{24}=\frac{3}{4}$ and 18:24 $=3: 4$.
She also simplifies $\frac{21}{30}$ to $\frac{7}{10}$, and 21:30 to 7:10.

1. How would Pene use the same strategy to simplify these fractions and ratios?
15:40
$\frac{14}{21} \quad \frac{64}{72}$
27:63
2. Pene uses her strategy to decide which of these equations are correct or incorrect. Which equations are correct?

$$
\begin{array}{ll}
\frac{20}{24}=\frac{5}{6} & 16: 27=5: 9 \\
2: 3=22: 33 & \frac{5}{7}=\frac{15}{21} \\
\frac{333}{1000}=\frac{1}{3} & 42: 36=7: 6
\end{array}
$$

3. Use Pene's strategy to find the number that goes in each box:

$$
\begin{array}{ll}
4: 9=\square: 45 & \frac{\square}{18}=\frac{24}{9} \\
\frac{63}{81}=\frac{7}{\square} & 64: 24=8:[
\end{array}
$$

4. What numbers go in each shaped box to make these equations true?

$$
\Delta: 49=0: 7 \quad \frac{7}{0}=\frac{28}{\Delta}
$$

5. What is always true about the numbers that go in the different shapes?

$$
0: 100=\diamond: 25 \quad \frac{56}{\triangle}=\frac{8}{\square}
$$

6. Pene has used letters instead of numbers. What goes in each empty box?
$\square: 51=b: 17$

$$
\frac{14}{f}=\frac{7}{\square}
$$

$$
6: \square=j: 15
$$

