Early Additive Stage

Lisa solves the problem 9 + 6 by working out 10 + 5 = 15. She also solves 7 + 48 by working out 5 + 50.

1. How would Lisa use the same strategy to solve these problems?

5 + 8 37 + 6 8 + 299 996 + 456

2. Lisa knows that these equations are correct or incorrect without working out the answers. Which equations are correct?

6 + 8 = 10 + 12	10 + 4 = 9 + 5
78 + 8 = 80 + 10	100 + 24 = 97 + 27
247 + 988 = 259 + 1000	348 + 52 = 350 + 50

3. Use Lisa's strategy to find the number that goes in each box:

$10 + 3 = \Box + 7$	30 + 🗆 = 28 + 5
87 + 24 = 90 + 🗆	□ + 245 = 300 + 242
789 + 94 = 800 + 🗆	5000 + 🗆 = 4998 + 666

4. What numbers go in each shaped box to make these equations true?

$$28 + \Box = 30 + \Delta$$
 $\bigcirc + 749 = \diamond + 746$

5. What is always true about the numbers that go in the different shapes?

6. Lisa uses letters instead of numbers. What goes in each empty box? $m + 48 = \Box + 50$ 296 + $\Box = p + 300$ $\Box + 85 = 100 + w$

Advanced Additive Stage

Kahu solves the problem 82 - 48 by working out 84 - 50 = 34. He also solves 452 - 239 by working out 453 - 240 = 213.

1. How would Kahu use the same strategy to solve these problems?

91 - 69 114 - 58 836 - 377

2. Kahu knows that these equations are correct or incorrect without working out the answers. Which equations are correct?

74 - 28 = 76 - 30	92 - 56 = 88 - 60
143 - 85 = 158 - 100	904 - 168 = 902 - 170
417 - 195 = 422 - 200	1123 - 483 = 1140 - 500

3. Use Kahu's strategy to find the number that goes in each box:

32 - 19 = 🗆 - 20	73 - 🗆 = 76 - 30
262 - 128 = 264 - 🗆	□ - 245 = 519 - 250
2006 - 997 = 2009 - 🗆	3333 - 🗆 = 3359 - 800

4. What numbers go in each shaped box to make these equations true?

$$\bigcirc -37 = \diamond -50 \qquad 832 - \Box = 843 - \Delta$$

6. Kahu uses letters instead of numbers. What goes in each empty box? $\Box - 95 = j - 100 \ v - 284 = \Box - 300 \quad 397 - p = 404 - \Box$ Advanced Multiplicative Stage

Zane solves the problem $64 \div 4$ by working out $(64 \div 8) \times 2 = 16$. He also solves $81 \div 3$ by working out $(81 \div 9) \times 3 = 27$.

1. How would Zane use the same strategy to solve these problems?

 $56 \div 4 \qquad 72 \div 3 \qquad 330 \div 5 \qquad 450 \div 25$

2. Zane knows that these equations are correct or incorrect without working out the answers. Which equations are correct?

 $56 \div 4 = (56 \div 8) \times 2$ $(108 \div 9) \times 3 = 108 \div 3$

 $(370 \div 10) \times 2 = 370 \div 20$ 4700 ÷ 25 = (4700 ÷ 100) × 4

3. Use Zane's strategy to find the number that goes in each box:

 $48 \div 3 = (48 \div 6) \times \square$ $(96 \div 12) \times 3 = 96 \div \square$
 $(228 \div \square) \times 3 = 228 \div 2$ $738 \div 3 = (738 \div 18) \times \square$

4. What numbers go in each shaped box to make these equations true?

 $(72 \div \Box) \times 2 = 72 \div \bigtriangleup$ 1440 \div \bigcirc = (1440 \div 36) $\times \clubsuit$

5. What is always true about the numbers that go in the different shapes?

 $(256 \div \bigtriangleup) \times 3 = 72 \div \bigcirc 504 \div \Box = (1008 \div 4) \times \clubsuit$

6. Zane uses letters instead of numbers. What goes in each empty box?

$$(648 \div 6) \times \Box = 648 \div k \quad 512 \div n = (512 \div \Box) \times 8$$

 $(625 \div y) \times 5 = 625 \div \Box$ 1000 ÷ 25 = $(1000 \div \Box) \times z$

Copyright © 2005 Numeracy Development Projects Teachers may copy this page for educational purposes.

Advanced Proportional Stage

Pene simplifies $\frac{18}{24}$ and 18:24 by knowing that $\underline{3} \times 6 = 18$ and $\underline{4} \times 6 = 24$, so $\frac{18}{24} = \frac{3}{4}$ and 18:24 = 3:4. She also simplifies $\frac{21}{30}$ to $\frac{7}{10}$, and 21:30 to 7:10.

1. How would Pene use the same strategy to simplify these fractions and ratios?

15:40
$$\frac{14}{21}$$
 $\frac{64}{72}$ **27:63**

2. Pene uses her strategy to decide which of these equations are correct or incorrect. Which equations are correct?

$$\frac{20}{24} = \frac{5}{6}$$

$$16:27 = 5:9$$

$$2:3 = 22:33$$

$$\frac{5}{7} = \frac{15}{21}$$

$$42:36 = 7:6$$

3. Use Pene's strategy to find the number that goes in each box:

$$4:9 = \Box:45 \qquad \qquad \frac{\Box}{18} = \frac{24}{9} \\ \frac{63}{81} = \frac{7}{\Box} \qquad \qquad 64:24 = 8:\Box$$

4. What numbers go in each shaped box to make these equations true?

$$\Delta: 49 = \bigcirc: 7 \qquad \qquad \frac{7}{\bigcirc} = \frac{28}{\bigtriangleup}$$

5. What is always true about the numbers that go in the different shapes?

$$\mathbf{O}: 100 = \diamond: 25 \qquad \qquad \frac{56}{\Delta} = \frac{8}{100}$$

6. Pene has used letters instead of numbers. What goes in each empty box?

$$\Box: 51 = b: 17$$
 $\frac{14}{f} = \frac{7}{\Box}$ $6: \Box = j: 15$

Copyright @ 2005

Numeracy Development Projects

Teachers may copy this page for educational purposes.